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Abstract—This paper presents a new automatic image annotation algorithm. First, we introduce a new similarity measure between
images: compactness. This uses low level visual descriptors for determining the similarity between two images. Compactness indicates
how close test image features lie to training image feature cluster centers. The measure provides the core for a k-nearest neighbor
type image annotation method. Afterwards, a formalism for defining different transfer techniques is devised and several label transfer
techniques are provided. The method as whole is evaluated on four image annotation benchmarks. The results on these sets validate
the accuracy of the approach, which outperforms many state-of-the-art annotation methods. The method presented here requires a
simple training process, efficiently combines different feature types and performs better than complex learning algorithms, even in this
incipient form. The main contributions of this work are: the usage of compactness as a similarity measure which enables efficient low
level feature comparison and an annotation algorithm based on label transfer.

Index Terms—Information search and retrieval, scene analysis, object recognition, automatic image annotation

1 INTRODUCTION

UTOMATIC annotation of images in its simplest

form aims at labelling images with keywords from
a dictionary. This procedure is necessary mainly to en-
able content based search and a better organization of
images. If this can be realised automatically, human
users are freed from the painstaking work of parsing
thousands of images. This also ensures that the obtained
labels are not influenced by the specific taste and incli-
nation of the human annotators.

Today more and more images are stored in image
archives and databases both locally on computers and
on the Internet. As multimedia data stored grows in size
it is becoming more difficult to maintain and organize
them. Saving resources such as images in annotated
form allows for efficient access and organization. This
is the primary reason why automatic image annotation
is deemed useful. Labeled images can be retrieved based
on their text labels which reflect their content as opposed
to providing visual content such as an example image for
retrieval.

One of the main problems in this area of research
is the difficulty of inferring high level textual labels
from low level visual features. This is referred to in the
literature as semantic gap to emphasize that a bridge must
be built between the two. Even though low level visual
features such as color, edges and texture can be extracted
easily from images it is most difficult to organize and
summarize them.

Another important issue in the domain concerns weak
labeling. Weak labeling means that even though learning

o Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

o R. Varga and S. Nedevschi are with the Computer Science De-
partment, Technical University of Cluj-Napoca, Romania, E-mail:
robert.varga@cs.utcluj.ro, sergiu.nedevschi@utcluj.ro

algorithms have access to annotated images two factors
may prevent learning from these examples. The first
one is regarding situations where even though a label
is not present, the object or concept represented by it
is contained in the image. Such images are considered
as negative examples by learning algorithms which is
undesirable. The second effect stems from the fact that
labels are not linked to special regions of the image
instead they are given for the image as whole. Thus it is
impossible to determine exactly which bounded area it
refers to.

The goal of this paper is to introduce a new approach
to image annotation, but not a fully optimized method.
In this regard its goal is similar to [1] i.e. to create a
new approach on which more complex methods can be
built. Currently, global feature vectors are employed for
image comparison. This means that a lot of fine detail
is lost when transforming the informative but noisy low
level features to a global one which represent the image
as a whole. Comparing low level features from two
images directly is the other extreme where we encounter
other problems: noise and high computation time. The
proposed approach lies between these two extremes and
enjoys the advantages from low level feature descriptive-
ness while maintaining a low run-time.

The contribution of this work lies mainly in the
definition of compactness and using it as a similarity
measure between images. Even though compactness is
present in many places in the literature in the form of
within-cluster sum of squares, in the form proposed here
it is much more general. Firstly, because it is defined
on two arbitrary sets: the data points and some other
set considered to be centers. Secondly, the definition
contains a general distance function. Thirdly, the norm-
based definition has interesting theoretical properties.
Fourthly, and perhaps most importantly, applying this
measure in the current context is a totally new idea.
We also provide a formalism for defining label transfer
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techniques based on weight function. This formalism
permits the mathematical description of several label
transfer techniques.

2 RELATED WORK

Research in the domains of object recognition and scene
recognition has produced numerous methods for auto-
matic annotation of images/videos. The purpose of this
section is not to present the state-of-the-art but rather
to put our proposed approach in context. Here, we will
categorise these methods into two high-level classes.
Even though algorithms from one of the class can differ
radically, the underlying approach is the same.

2.1 Keyword-based annotation methods

The first category of methods create models for every
label (or keyword, or concept) from the dictionary. We
refer to a model as representation of a label. At annota-
tion time the relevant labels are determined using these
models and the extracted low level visual features from
the test image. In most of the cases the inclusion of a
label in the annotation is based on a binary decision. One
of the disadvantages of these methods is that annotation
with a keyword is based on a single decision and not
based on multiple possibilities.

There are various types of models employed in the
literature for representing a label: Gaussian Mixture
Models|2] characterize a label as a multimodal Gaus-
sian distribution defined on the feature space, Dirichlet
Distribution[3] is a latent variable model that models
the joint and conditional distribution of of the labels
given the image, SVM classifier models[4] are supervised
learning models that learn a separating plane between
the data points of different classes in the feature space,
Bayesian Hierarchical Models[5] are used to infer labels
by employing a patch based representation of the in-
put image using a Bayesian inference, Multiresolution
Hidden Markov Models[6], [7] learn both spatial and
multiresolution relationships between features, Markov
Random Fields[8] increase annotation performance by
learning spatial relationships between pixels.

Next we describe some methods from this category
in more detail. In Supervised Multiclass Learning[2]
each label is modelled as a Gaussian Mixture Model.
The model corresponding to a specific semantic label is
created by applying a hierarchical version of Expectation
Maximization(EM) on the visual descriptors from each
training image which share the keyword. By substituting
descriptor values from a test image into each probability
density function - the previously obtained GMMs -
one can determine the conditional probability of each
concept given the visual descriptors. Annotations are
formed by taking the first 5 concepts with highest log-
probability. Although this method constructs models in a
very efficient manner, the training process is long mainly
because of EM.

The works from [4], [14] rely on classifying global
image features in the form bag-of-words features for
scene recognition. These features constitute a global
histogram for an image or a region. Each extracted local
feature vector is associated to the closest element from
a codebook of local features and the frequency of each
center from the codebook constitutes the histogram (i.e.
the histogram is the discrete distribution of the local fea-
tures). This histogram construction method corresponds
to average pooling, other alternatives are available such
as max-pooling[11]], geometric /,-norm pooling[12], Ge-
ometric Consistency Pooling in Superpixels[13]. A clas-
sifier (e.g. SVM) is trained using these histograms and
the available labels. However, to produce more than
one output one must use multiple binary classifiers
(one for each keyword to form a multiclass SVM). This
makes it necessary to form a training set containing
negative examples, images which are not labelled with
the respective keyword. The assembling of such a set
implies extra work and one can always provide new
negative examples, which clearly is a drawback of binary
classifiers.

2.2 Retrieval-based annotation methods

The second category of methods are based on the idea
that similar images have the same labels. The key point
in these methods is to define similarity measure between
two images. At annotation time one can retrieve similar
images from the database using the similarity measure
and use the labels from these images to form the annota-
tion. To emphasize the difference between this category
and the former one, we mention that here models are
practically constructed for each training image. These
methods make use of label transfer since labels are passed
on from similar images using different strategies to form
annotations. Because the proposed approach falls into
this category we will present similar approaches from
the literature.

A recent publication[1] presents a baseline method for
k-nearest neighbor image annotation. The images are
represented by different types of global features: color
histograms from various color spaces, Gabor and Haar
wavelets for texture descriptors. The similarity between
images will be the inverse of the distance between the
global descriptors of the two images. Different feature
types contribute equally in the calculation of the final
distance value. Label transfer is then obtained in a
greedy manner, giving importance to the first match.

The authors in [9] rely on a large image database
of 80 million images from the Web to perform a k-
nearest neighbor label transfer. The raw pixel values of
32x32 form the global feature vectors and an adaptive
distance function is used as a similarity measure. The
large number of learning examples compensate for the
usage of only low level features. Another large dataset
focusing on scene classification is presented in [10].
The publication evaluates state-of-the-art methods for
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large-scale scene recognition and makes use of multiple
features.

One can take the matching technique one step further
by allowing more general metrics such as the Maha-
lanobis distance. The parameters of the distance met-
ric are obtained using Metric Learning techniques. The
results using such method are described in [15], [16],
which is one of the currently best performing methods
on several benchmarks.

Other approaches for annotating images are consid-
ered in [17], where each object is described using at-
tributes. The work [18] focuses on learning object at-
tributes together with object categories. In [19] the au-
thors represent the image as a high-level vector of object
detector responses denoted as Object Bank.

3 COMPACTNESS BASED MATCHING

In the following we define the notations used throughout
the paper. Let Z = {I1,Is,...,In;} denote the images
constituting the training database, and £ = {l1,1ls, ..., ;s }
the vocabulary containing the semantic labels (or key-
words, words, concepts, tags). Ground-truth information
is represented by associating to every image from 7
a set of labels from £: G = {(I,L)|I € Z,L C L}.
We denote with X the descriptors extracted from a test
image, which is a set of descriptor vectors z;, each
having the dimension D. The descriptors from training
image I,, are called X" = {2\ |i = 1,7, }, where T, is
the number of descriptors extracted from image n. The
set of centers extracted from training image n is the set
c™ = {™|i = T K}, the set of all centers is notated
with C = UC(™. Note that ultimately these are sets of
points in a high dimensional space.

Current annotation methods that are based on image
retrieval extract a global feature vector from each image
and compare these vectors using a distance function. But
is it possible to compare local features? Even though
the global representation enables a fast comparison de-
tails of the particular image is lost. This is the main
reason why it would be better if comparison of local
features could be obtained efficiently. It is obvious that
comparing each local feature from one image to each
from another would be practically infeasible. This is
why we propose to represent each training image with
a set of relevant descriptor centers. These are obtained
using the k-means clustering algorithm[20] applied on
all the descriptor vectors extracted from that particular
image. The k-means algorithm can be substituted with
another method with better performance, but we use
it for simplicity. We need to define then a distance
- a matching score - between some new data points
represented by test image features and a set of centers.
This is where compactness comes in.

3.1 Compactness definition

Compactness is a measure that indicates how close data
points are to a set of centers. The compactness between

3
a set of points X and the centers C is given by:
1X|
(X, |X| Zmlnd (24, ¢5) (@)

where j € 1,K, | X| denotes the cardinality of the set
X and d(x,y) is a metric defined on the D dimensional
space. The previous definition states that compactness is
the sum of the distances of each point from X to the
closest point from C. Here X refers to any points in
general, and in particular it can be the same as the set
of features extracted from image n, X(™ in which case
|X| = T,,. In our experiments we have found that the L!
distance performs best in this context compared to the
L? or the Chi-Square metric.

A less restrictive definition uses L” norms instead of
the distance function. This is useful in practice because
it avoids extracting roots and has interesting properties.

|X]

( |X| Zmlonl CJHp (2)

Note, when applying k-means on a set of points X the
objective function to minimize is exactly the compactness
of the centers and the point set X. So the following
are equivalent to the L? norm compactness applied to
the same points from which the clusters centers were
obtained: within-cluster sum of squares; the minimum
sum of squares; distortion function; potential function
(the literature uses a multitude of terms referring to this
value).

The compactness is always positive since it is a sum of
distances or norms. Also, if we suppose that the points
X are characterized by centers C' then:

o(X,C) < ¢(X,C"),VC" £ C 3)

The last inequality(3) holds if k-means truly finds the
set of centers that minimize the compactness. This can
be ensured by running the algorithm multiple times
with different initial center guesses and using different
optimized initialization techniques in order to avoid
local minimas[21]]. More details about the k-means al-
gorithm employed here along with specific parameters
are described in section 6.1.

To use compactness as a similarity measure between
two images one must first find their representation in
some feature space denoted by X and Y respectively.
Afterwards, one of the images - consider in this case the
second image - is characterized by the cluster centers of
the features. At this step we obtain the set C' from Y.
The similarity is then calculated as the compactness of
the features from the first image to the cluster centers
of the second image, more precisely ¢(X,C). If the
asymmetry of this measure is an issue the compactness
can be evaluated with the roles of the images swapped,
however in practice the training images will be com-
pactly represented by cluster centers and it is much more
practical to reuse these.
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3.2

We now investigate what this measure represents. Sup-
pose we are given a set of points X and we want to
find their compactness relative to some set of centers C.
Consider the following partitioning of X around each
cx, € C' (Voronoi partitioning):

Interpretation and motivation

—qlihk=1IC1 @

This states that the sets X}, contain all the points that
have center ¢, as the closest center to them. Clearly the
sets X, are mutually disjoint sets and UX; = X. Then
the following identity is true for compactness that uses
the LP norm:

X = {z € X|k = argmin;{||z

€]
1

C(X,C) = EZ|X]€|C(X]€,C]§)
€]
k=1zxeXy

IC]
= 7 o e = Tl + Xl 17— cil)
k=1 ze€Xy

Where 7 are the centers of mass for the points Xj.
The decomposition is true because the partitions contain
only the closest elements to c;. Tha last step follows from
a well known lemma involing L? norms:

Dol —cllp =3 lle —zellp + X1 - fle =zl (6)

rzeX reX

We show this in the L? case in 2D, it can be easily
extended for any p and any dimensions - we use p =
1 and p = 2 in this work. Let z. denote the center of
mass of the points z, so 2. = ‘71| > sex z. Consider the
translated coordinate system Ouw that has as the origin
this center of mass. Also for convenience, rotate the axis
such that the point ¢ has the representation (c,,0). In
this coordinate system we can write for any point from
X, z; = (us,v;):

llws = cl® = (cu +ui)? + v} @)

Summing over all the points:

ZH%‘—CW —Zcu +Zu +v +20u2u1
—ZH%IIQHXI% ®8)

The last step uses the fact that the center of mass is
now the origin. If the elements of X, are considered to be
ii.d. random variables then 7 = E[X}] and ¢(X;, zcr) =
Var[Xy] if the compactness uses the Euclidian norm.
The identity (5) shows some important characteristics

of the compactness measure. It is composed out of two
terms: the first term is the variance of the partitions and
the second is the distance between the original centers
and the centers of the partitions Xj. This means that
the compactness will be minimal if the variance is low
and the centers are close. Consequently, compactness
indicates how tightly the points are situated around the
centers. It may happen that ¢(Y,C) < ¢(X, C) for some
test data points Y and training data points X. This is the
case when the test points Y have the same centers but a
lower variance than X.

3.3 Comparison to two other similarity measures

We now compare compactness to two similarity mea-
sures and show its advantages over them. The two
alternatives considered are: distances defined on bag-of-
words type histogram descriptors, and the probability of
data points fitting a Gaussian Mixture Model. Other sim-
ilarity measures rely on distances defined on raw image
pixel values or on histograms. Mutual Information[22],
for example, is defined as the difference between the
individual entropies and the joint entropy of the two
images. Compactness assumes that one of the images is
represented succinctly by a set of centers which reduces
computation time.

If the bag of words approach is used then every image
will be characterized by a histogram which reflects the
distribution of the closest prototypes associated to each
feature. The prototypes are k-means cluster centers and
together they form the dictionary. The disadvantage in
this case is that some relevant centers for the current
image may not be present in the global dictionary. This
prohibits the correct comparing of the images since
important centers will be mapped to other centers from
the dictionary. Even if all the relevant centers of the
image are inside the dictionary, if two images have the
same histograms we cannot determine how close or far
they are even though there may be significant differences
between them.

By studying Figure (1) we can analyze two cases where
the histogram representation fails. The 2D training points
which are partitioned in two are marked with black
circles and were drawn from the same two normal dis-
tributions on both figures. The test points corresponding
to two partitions are blue squares. In both cases the
histogram for the test points will coincide with that of
the training points. In the left graph (case a) both the
test and the training points have the same centers, but
the the test points have a larger variance. In the right
graph (case b) the distributions have the same variance
but the centers of the partitions are different. In all
cases histograms will indicate that the test points are
from the same distribution as the training points even
though there are significant differences. This drawback is
eliminated by the compactness which takes into account
both the spread factor - variance - and the displacement
between the centers.
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Fig. 1: Two cases were the histogram representation fails

Associating every point to the closest center lies at the
heart of the compactness. Consider now that the image
is characterized by a Gaussian Mixture Model as in [2].
In this case the similarity between it and some feature
set X is the probability that the data fits the model:

K
P(X|7rk,mk,2k) = H ZﬂkG(x,mk,Ek) (9)
zeX k=1

This compares every x with every center m;, and thus
always penalizes good matches, since if a point is close
to some my, it will be far from all the other K —1 centers.
Regardless of how well the data fits the distribution
this penalty to the likelihood is always applied. Another
issue with GMM obtained through EM is that on many
occasions fixing the number of centers to a constant
gives poor distributions since two or more centers are
described by only one Gaussian with a covariance matrix
of large values. A model with large covariance values
will tag as similar a wide range of points which is clearly
undesirable. This effect becomes visible if an image is

retrieved as similar for many image queries.

4 LABEL TRANSFER

Label transfer is achieved by constructing a histogram
h. Each of its bins corresponds to a concept from L,
so h € RM. We take into consideration the labels of
the best N matches. After histogram construction, the
labels with the highest corresponding bin value will be
chosen to form the final annotation. Depending on how
the histogram bins are incremented, different transfer
schemes can be obtained.

The result of the matching procedure can be mod-
elled as a function u, which returns an ordered list
of indexes, based on the compactness between the test
image descriptors and each of the training image centers:
w(I) =< iy, g, ...,ix >, where ¢(X,C(")) is the minimal
compactness, the one with i, is the second smallest and
SO on.

We define a weight function w : 1, N — R. Every label
from the training image I;, increments the correspond-
ing bin in the histogram by w(n):

N
h = Z Z w(n)d;

n=11leL,

(10)

L,, represents the labels from n-th match, more precisely
from the training image I;, from the list p(I). These
labels are available from ground-truth information G.
& € RM is vector a containing zeros on all positions
except at the position uniquely associated to label [
where it is one. By changing the expression of the weight
function w different types of transfer techniques can be
achieved. In the following we present some particular
cases.

4.1 Equal contribution transfer

In this case every match from the list ;(I) contributes
evenly to the histogram. We have:
wo(n) =1,Yn=1,N 11
This is the most elementary type of transfer, it can be
viewed as a majority voting scheme. It has the advantage
that it eliminates those labels that only appear in a few
matches. However, if the matching technique is good,
we want to give more importance to the best matches.

4.2 Transfer based on rank

Rank based transfer entails weighing the best matches
more and decreasing the weight exponentially based
on the rank. In this case the weight function has the
following form:
we(n) = 2‘1(1_%),‘771 =1,N (12)

The parameter a can be tuned to obtain the best results.
Of course the base of the exponent can be any number
b > 1 or equivalently we can choose a to be a'logsb.
One can see that w,(1) = 2% and w,(N) = 1. Note that
weighing the matches equally (case wy) is a special case
of this function where ¢ = 0. This is why, at parameter
testing these two functions fall into the same category.

Note that this gives importance to matches according
to their position regardless of their distance to the test
instance. It may well be that all matches are very close,
in this case the rank is not relevant.

4.3 JEC type transfer

The technique presented in [1]] favours the best match
and the rest of the labels are transferred based on their
appearance frequencies in the training set. This case
corresponds to the following form:

wy(1) =10,wy(n) =1,¥n =2, N (13)

The histogram values will be updated on the last step
in order to take into account the label frequencies. It is
a greedy technique and thus depends on a good first
match.
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4.4 Transfer based on distance

To take into account the compactness values c,, of each
of the matches, the following weight function is defined:

wa(n) = 2b1=en/e) yp = TN (14)

This is particularly useful where compactness values are
relevant, however the first match will always receive the
same weight, i.e. because this weight function is relative
to c; it does not treat the case where even the best match
is far away from the test instance.

4.5 Multiple features

Histogram construction using weight functions can be
easily extended to the case where we intend to use
multiple features. We begin by constructing the his-
togram normally for the first descriptor type. Then we
save the histogram instead of resetting the bins to zero
and repeat the process for the matches obtained from
the other descriptor types. In this way every descriptor
contributes to the final histogram which will provide the
annotations.

In this paragragh we will refer to an instance of the
algorithm that uses a specific kind of local feature simply
as “a method” in order to simplify explanation. In this
case the definition for the transfer histogram becomes:

=YY Y et

m n €Ly n

(15)

where the index m refers to the method number, 7, is
the weight of the method m and L, ,, is the set of labels
from the n-th match using method m. In our experiments
we have set 7, = 1,Ym, ie. we weigh each feature
type equally. Note that the order of applying different
methods is irrelevant.

4.6 Considering appearance frequency

After the histogram has been constructed using one of
the weight functions described before, it can be updated
by the frequency of each label from the training set. This
is the number of times it appeared in the training set. For
each non-zero position of the histogram (corresponding
to labels that appeared at least once in the matches) we
add a value proportional to the frequency (f;) of the
corresponding label:
In this case equation is extended as:

h=Y nmy > wai+e Y fid

n 1€Lmn IEULm n

(16)

The parameter ¢ is set in such a way so that ¢ max f; <
minw(n), i.e. frequency values are secondary to weights.
This may seem to reduce the influence of this factor
but the goal is to use this information only in uncertain
cases, for example when we have two concepts with
the same histogram value. JEC type transfer requires the
histogram to be constructed using the previously defined
equation.

Algorithm 1 Training

Ensure: centers from all training images.
1: for all training images I,, do
2. Extract local features X (™)
3 Apply k-means using K centers to obtain C(™
4:  Save centers
5: end for

Algorithm 2 Testing

Require: Training image centers.

Ensure: Annotations for every test image.
1: for all test images I do
2:  Extract local features X

3:  Sample X to get B

4:  for all training image I,, do

5: find ¢(B,C™)

6: end for

7. Obtain the first N best matches using p(I)

8:  Transfer ground-truth labels from matches to ob-
tain annotation using

9: end for

5 ALGORITHM DESCRIPTION

In this section we provide the high level steps required
for the training process and for effective image anno-
tation. Also the effect of different parameters on the
execution time is discussed. The training involves the
steps described by Algorithm 1.

We have fixed the number of clusters for the k-means
algorithm to K = 20 for all our experiments based
on some preliminary tests. If multiple features will be
used for annotation it is necessary to run the training
for each feature type. Note that in this way we form
the building blocks for more complex methods that use
different feature combinations and the training is done
only once for each feature type.

In order to annotate an image the following operations
from Algorithm 2 are to be executed. If multiple features
are used then these operations are performed for each
feature type and the equation or is used once
at the end to form the transfer histogram.

6 EXPERIMENTAL RESULTS
6.1 Implementation Details

All tests for the Corel5k dataset were run on a machine
that has an Intel 2.66 GHz processor with two cores and
2GB RAM. For the larger datasets we performed the
tests on the computing grid of the Technical University
of Cluj-Napoca[23]. The number of parallel processes
was set to 200 or 400. The application was implemented
using C/C++. Libraries included were: OpenCV - vision
library, vlfeat - for SIFT extraction. K-means implemen-
tation provided by OpenCV[24] was used running each
time for a maximum of 200 iterations, with tolerance
of 1077, five trials and kmeans++ center initialization
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by Arthur and Vassilvitskii[2I]. The vlfeat library is
utilized for dense SIFT extraction[25]. Multithreaded
implementation was developed for matching and SIFT
extraction in parallel from multiple image channels. The
tests on the Corel5k involving high dimensional descrip-
tors (SIFT and different combinations) were run on two
threads in parallel.

6.2 Local descriptors

This section contains details about the local descriptors
used for testing. A summary of the local descriptors is
given in Table|l] Feature extraction strategy employed is
dense sampling on a grid with displacements of 2 pixels.
Each of the following paragraphs describes a different
feature type.

The first feature type we present is a simple color
descriptor that is obtained by first resizing the image
to maximum a dimension of 64 pixels, while retaining
the aspect ratio. This operation performs an averaging
and additionally it reduces execution time. Afterwards,
the feature vector at each pixel will contain the triplets
from RGB, Lab and HSV color spaces. Feature dimension
is 9. Despite its simplicity, this descriptor can produce
surprisingly good results in this context. The importance
and the efficiency of color descriptors is demonstrated
by the fact that almost all annotation methods make use
of this information. It is natural then to include a local
descriptor based on color in our experiments.

A recently published texture descriptor called
WLDJ26] is also tested. Here we use a local histogram
variant of the descriptor. We extract the excitation and
gradient orientation values at every pixel and construct
histograms of these on 8x8 blocks. These histograms
will be the local features. We use the single resolution
variant with 8 angle bins, 6 excitation bins and the
parameter S (the number of excitation subbins) is set to
1. Final feature dimension is 48. This texture descriptor
was evaluated on the Brodatz texture benchmark and
has obtained superior results compared to SIFT, Gabor
and several other texture descriptors (see [26] for
results).

Histogram of Oriented Gradients(HOG) descriptors
are extracted both from a grayscale image and from all
three channels of the RGB image. The number of angle
bins is set to 12. Feature dimension is 12, respectively
36 for color type. This descriptor was successfully ap-
plied for pedestrian detection [27] and other objects as
well[28].

Discrete Cosine Transform coefficients have been uti-
lized with great success in SML[2]. The coefficients are
obtained on a 8x8 region using matrix multiplication and
dimension reduction can be obtained easily be consider-
ing only the upper left corner of the resultant matrix[29].
We use the descriptors from the 3 channels of the Lab
color space.

Scale Invariant Feature Transform(SIFT[30]) features
are extracted on a dense grid from the image trans-
formed into the Opponent Color Space. This sampling

TABLE 1: Local descriptors employed

Descriptor Type Dimension
RGB color 3
Lab color 3
HSV color 3
RGB+Lab+HSV color 9
WLD texture 48
HOG texture 12
color HOG texture 36
DCT texture 63/192
dense SIFT texture 128
dense SIFT-OCS | texture 384
Law texture 10
Gabor texture 12

strategy has been proven to be the most effective in
[31]. This descriptor has the largest total dimension from
the ones used here. SIFT has properties such as scale
and rotation invariance which are very useful for object
recognition.

Law texture descriptors[32] are obtained by filtering
the image with the 16 Law convolution kernels. The
result from the outer product of 4 one dimensional
kernels and does not include the W kernel. No energy
is calculated, but instead these raw values are used. The
resulting descriptor is of size 10.

Another texture descriptor is obtained by filtering the
image with different Gabor filters. The filters have 4
different orientations and 3 different scales, which is
enough to represent 97% of the image energy [33]]. The
results of the filters form a the feature vector at each
pixel. The applications of Gabor filters include mainly
texture descriptors [34], [35].

Visual descriptor extraction using dense sampling can
yield many feature vectors. If the image has height h
and width w and a sampling strategy with displacement
d is used then we have: |X| = {h~w/d2J, where |z]
indicates the floor function. Using every vector from
the set for compactness calculation would be practically
inefficient (high execution time). This is why a uniform
sampling is applied on the set X and the compactness
is calculated on the reduced set B. This is not the
same as increasing the grid spacing since it may be
that |X| # k?|B|, for some natural number k. So let
B = {b; = z;aliA < |X]|}, i.e. B contains every A-th
sample from X. In this case |B| = || X|/A| and we refer
to the cardinality of the set as the bag size.

6.3 Time complexity analysis

The execution time for annotation is dominated by the
matching process. The time complexity of matching us-
ing compactness is given by:

O(T-B-K - D)

where T is the number of training images; B is the ‘bag’
size - the number of features selected for compactness
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calculation; K is the number of clusters for k-means;
D is the dimension of the feature vector. This can be
optimized by halting distance calculation if the current
distance exceeds the minimum distance obtained up to
that point. The execution time grows linearly with the
feature dimension, this is why it is recommended to
apply dimension reduction techniques such as Principal
Component Analysis (PCA) on large feature vectors
such as SIFT. Matching can be parallelized easily at the
highest level (at T) by dividing the training set into
groups for each thread. We compare this to a Bag-of-
words approach where the histogram construction and
the matching costs:

O(F -D-C+T-C)

where F' is the number of features extracted from an
image, C' is the number of keywords from the codebook.
This shows that the first approach requires more time
and is linearly proportional to the number of training in-
stances. However, methods of later type usually require
a much larger feature vector (large D). Even though the
time complexity is high, relatively low execution time
can still be achieved. This is demonstrated by providing
the execution times of different cases in the experimental
results section.

6.4 Evaluation protocol

The protocol for evaluation follows that which was
already outlined in previous works (such as [2]) in order
to enable comparison between methods. The different
databases are split into two disjoint sets: training set
- used for extracting k-means centers; test set - for
the evaluation of the method. No information about
the ground-truth labels of the test set are used when
generating the automatic annotations. The automatically
generated annotations are afterwards compared with the
human given ones to obtain metric values.

We label each image with exactly five labels. For each
keyword from the dictionary that appeared at least once
in the test ground-truth we calculate the precision and
recall values. For each label we define the following
numbers:

e [ - the number of times [ appears in the test ground-
truth;
o lg - the number of times [ was provided in an
annotation by the automatic annotation method;
e [. - the number of correct annotations with the label
L
In this setting the precision is p = [./l, and the
recall is r = I./l;. In order to obtain a global score we
find the average precision and recall. These are obtained
by averaging the precision and recall values of all the
keywords which appear at least once in the test ground-
truth. Another metric used is the number of non-zero-
recalls. This is calculated as: nzr =}, 1.
Additionally we introduce an indicator rarely used
for evaluating annotation methods. The F'1 score is the

harmonic mean of the average precision and the average
recall. It enables us to look at a single value for finding
the best parameters and makes it easier to compare
different annotation methods. By taking the harmonic
mean, the score is closer to the lesser value, so a high
F1 score can only be achieved with both a high precision
and high recall.

6.5 Evaluation on Corel5K

We performed extensive testing on this database using
different underlying features for the matching method.
The structure of this database has been described in
the previous works (e.g.[2]). We mention only that the
training set has 4500 images and the test set consists of
500 images, the size of the dictionary is 374. The metric
values for matching using only one type of feature, as
well using multiple features are shown in Table [3|. The
numbers next to the feature type indicate the dimension
of the descriptor vector.

To clearly show the advantage of using compactness
over histogram distances we provide test results on the
Corel5k using the same features and transfer method w
as in [1]]. In addition we provide the best results obtained
using one of the proposed transfer methods - w, refers to
the rank based exponential weighing with the subscript
parameter a having the optimal value. Table () shows
that in all cases compactness ensures a higher average
precision and the same or higher recall. We have used
L' metric for comparison and not Kullback-Leibler di-
vergence for the Lab colorspace as in [1]. The proposed
weighing further improves score values boosting both
precision and recall.

To find the best parameters we have performed a
grid search varying several parameters in the ranges
given below. Test time can be saved because matches are
obtained once for each bag size and afterwards different
transfer techniques can be applied. The results with the
highest F'1 score are presented in Table (3). As mentioned
before, we determined that L' distance behaves best
in this context for compactness calculation. Parameter
ranges used for testing are:

« bag size - |B| € {50k|k € 1,10};

« neighbourhood size - N € {5, 10, 15};

» weight function type - wq, ws or wg;

« weight function w, parameter - a € 0,5;

» weight function w, parameter - b = 300;

« considering frequency or not - ¢ € {0,107%,2.1073};

o number centers per image - K = 20.

The Table 3| contains metric values using different
features on the Corel5k benchmark. Entries are ordered
based on F'1 measure that guided us in deciding which
method is better. The last column shows the average
execution time in seconds for a single image annota-
tion using a single threaded execution on the machine
described in section 7.1. ('-" signifies no data available).
Execution time is given for the best parameter combina-
tion and it depends on bag size. Simple color descriptors
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TABLE 2: Comparison using the same feature type

Feature Precision | Recall | NZR F1
JEC+RGB 20 23 110 21.39
JEC+Lab 20 25 118 22.22
JEC+HSV 18 21 110 19.38

Comp+RGB+w y 21.98 24.38 121 23.12
Comp+Lab+w ; 21.29 24.80 123 2291
Comp+HSV+w ; 19.33 26.94 128 2251
Comp+RGB+ws 21.58 26.85 123 23.93
Comp+Lab+ws 22.34 25.62 123 23.87
Comp+HSV+ws3 21.95 26.68 124 24.09

behaved surprisingly well compared to different texture
descriptors. Also the low dimensionality of this feature
permits a very low execution time. Color variants of
the texture descriptors perform better than gray-scale
ones. The lower part of the table contains combinations
of features. This confirms that the annotation method
successfully combines multiple features and produces
better results than using individual features.

We now compare our results with previous state of
the art results in Table 4] Each percentage is taken from
the indicated reference. Optimal configuration found by
our tests is: using color descriptors along with DCT63
and SIFT, with the parameters set to: K = 20,B =
200, = 2-1073,N = 5,a = 3 (last line from Table
(3)). We note that Compactness based methods produce
similar results to SML when using the same features (see
DCT63 and DCT192 in Table B) but using SIFT proves
to be better. By efficiently utilizing multiple features our
simple approach outperforms many methods from the
literature based on the F'1 score including MBRM, SML,
JEC, ProbSim. MRFA does not provide exactly 5 labels
at annotation which helps to achieve higher scores. The
better results of TagProp can be explained by the fact that
it employs Metric Learning which could also be used in
our context to improve results.

6.6 Effect of parameters

Some general remarks can be made about the influence
of different parameters on the metric values. We analyse
results from Corel5k in detail. It is possible that the
behaviour on other databases is different. The effect of
each parameter is analysed by fixing the other ones
to their optimal values. Multiple cases are considered
where necessary.

Increasing the bag size B has moderate effect on
score values. This can be studied using Figure (3). Score
values increase and oscillate, and in some cases reach
a maximum for fairly low values of B. Because bag
size linearly influences the execution time lower bag size
values such as 100 or 200 can be utilized. This is practical
because it achieves faster execution while maintaining
near-optimal performance. The oscillating behaviour is
due to the errors introduced from sampling.

TABLE 3: Compactness based annotation results using
different feature types on Corel5k

Feature Precision | Recall | NZR F1 exec
Gabor(12) 7.46 8.67 76 8.02 -
HOG(©9) 11.22 11.57 85 11.40 -
Law(9) 13.82 17.56 105 15.47 -
color 14.36 17.57 109 15.80 -
HOG(36)

WLD(48) 16.99 18.42 108 17.67 1.83
SIFT(128) 17.00 24.94 122 20.21 -
CSIFT(256) 19.49 24.51 120 21.72 -
color(9) 22.71 27.06 128 24.69 1.39
DCT(63) 22.32 28.27 129 24.95 0.48
DCT(192) 22.82 29.02 129 2555 | 5.28
SIFT- 23.75 31.23 140 26.98 | 22.58
0OCS(384)

WLD + 26.45 27.88 120 27.15 44
color(57)

SIFT + 30.19 31.99 131 31.06 | 18.23
WLD +

color(441)

SIFT + 30.15 32.17 133 31.13 | 20.62
DCT63  +

color(456)

TABLE 4: Comparison with state-of-the-art Corel5k

Method Precision | Recall | NZR F1
MBRM]36] 24 25 137 24.48
SML[2] 23 29 137 25.6
JEC[1] 27 32 139 29.2
ProbSim[37] 254 36.5 106 29.7
Compactness 30.15 3217 133 31.13
MRFA-grid[36] 31 36 172 33.31
TagProp[15] 32.7 423 160 36.8

We now study the influence of neighbourhood size
N. Better results were obtained using smaller N val-
ues. This may be due to the relatively small size of
the database, so most of the images have few good
matches among the training instances. We have found
that N = 5 produces best results for individual features
and on some occasions N = 10 for multiple feature
case. Further fine-tuning could involve experiments con-
sidering N € {1,2,3,4}. This also demonstrates that
the matching technique is efficient because the first few
matches provide good labels to transfer.

Figure (4) contains metric values using different trans-
fer techniques. We have associated a = —2 to JEC-type
transfer and a = —1 to distance-based transfer. We have
found that in almost all cases weighing based on rank
performs best. In some cases we obtain better results
with wg or wy, but the general recommendation is w.
The scores with a = 0 are almost always lower than
the optimal scores obtained using a = 3 or a = 4.
Overall tendency here suggests to accord significantly
more importance to the best match. To provide a more
encompassing overview Table (6) shows score values
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(a) Test image

TABLE 5: Sample annotations using color+DCT63+SIFT from Corel5k

(b) Match 1

o

(c) Match 2

(d) Match 3

(e) Match 4

Fig. 2: Sample matches and annotation from Corel5k - Predicted labels for test image a): water, beach, tree, people,
sand. Showing only best five matches based on SIFT features. Note that incorrect labels from match 2 (confusion
between sand and snow) get filtered out because of the transfer technique.

(f) Match 5

people

Prediction swimmers | stone pillar temple | people outside mu- | cars tracks formula | sky mountain tree
pool water athlete people sculpture seum dance tree wall straightaway snow sky

Ground- people pool swim- | pillar temple sculp- | tree people dance | cars formula tracks | clouds mountain

truth mers water ture stone outside wall sky snow

using only RGB features, every row corresponds to a
constant bag size and every column contains a different
transfer technique.

If we consider frequency information it can increase
overall performance (F'1 score). However, this almost
always entails an increase in precision and a decrease
in recall and NZR values. The reason for this is that
favouring the more frequent terms reduces the chance to
annotate with rare labels. The influence of the frequency
was tested using 3 different values: zero influence, mini-
mal influence setting ¢ = max f; as suggested, and twice
the previous value. The second case give higher F'1 score
in general.

Computation time varies in accordance with the time
complexity formulas derived in section 5. It is linear with
respect to feature dimension and also with respect to
bag size. These two parameters can control the execution
time, modifying the bag size has only minor negative ef-
fects on annotation performance. Even though the IAPR-
TC12 and ESP-game datasets are much larger annotation
time still remains fairly low due to the optimizations
mentioned (halting calculation when distance exceeds
the current N-th maximum).

6.7 Evaluation on IAPR-TC12

This image collection consists of 20,000 still natural
images taken from locations around the world and
comprising an assorted cross-section of still natural
images[38]. The same images are used from the IAPR-
TC12 database as those in [I] in order to compare results
in a correct manner. This database is larger, the training
set numbers 17825 images and the test set contains
1980 images with 291 labels. The image annotations and
test/training split is obtained from the files located at
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The metric values are calculated using all the labels
from the ground-truth. This is the right way to obtain
the number of correct labels however recall values will
be lower. This is so because we only provide 5 labels,

1. Makadia annotation files
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TABLE 6: The influence of parameters on F1 score

TABLE 7: Compactness based annotation results using
different feature types on IAPR-TC12

Feature Precision | Recall | NZR F1 exec
color(9) 23.89 23.63 216 23.76 2.0
DCT(63) 25.24 24.64 225 24.94 6.3

SIFT(384) 31.82 32.45 245 3213 | 17.0

SIFT+DCT+color 429 22.6 228 29.6 440

TABLE 8: Comparison with state-of-the-art IAPR-TC12

Method Precision | Recall | NZR F1
MBRM[39] 24 23 223 2348
JEC[1] 28 29 250 28.49
Compactness 42.9 22.6 228 29.6
TagProp[15] 46.0 35.2 266 39.88

and in cases where in the ground-truth there are more
than 5, we inevitably end up marking some labels as not
recalled.

We provide some sample annotations for this dataset
in Table B} Notice that a lot of images have much more
labels than 5. The results for this database (Table |Z[)
again indicate that fairly good results can be obtained
using simple color descriptors. However, SIFT features
outperform other features mostly by reaching an F1
score of 32.13. It can be seen that the combination of
different features is more successful on this database.
Average precision value increases with 11%. Note that
combining features results in lower recall and higher
precision values. This is natural since more features
provide more ”“opinions” about the correct label and the
consensus tends to reflect the truth.

The comparison made in Table [§ shows that Com-
pactness obtains much better precision than MBRM and
JEC (by 15%). Recall and NZR values are lower, but we
mention here that using JEC-type transfer similar values
were obtained as in [1]].

11

TABLE 10: Compactness based annotation results using
different feature types on ESP-game

Feature Precision | Recall | NZR F1 exec
Law-color(30) 16.36 16.07 217 1622 | 2.32
WLD(48) 19.65 17.33 228 18.42 | 3.61
color(9) 19.73 19.28 230 19.50 | 1.56
DCT(63) 21.49 20.50 236 2099 | 7.92
SIFT(384) 22.75 20.42 230 21.52 | 35.13
WLD+color 31.07 19.78 227 2417 | 11.63
SIFT+DCT+color 34.67 21.29 233 26.38 | 39.45

TABLE 11: Comparison with state-of-the-art ESP-game

Method Precision | Recall | NZR F1

JEC[T] 22 25 224 234
Compactness 34.67 21.29 233 26.38
TagProp[15] 39.2 27.4 239 32.25

6.8 Evaluation on ESP game

This dataset is the result of an experiment involving
collaborative human annotation. The subset of pictures
used is the same as in[I]. More exactly: 19659 training
images, 2185 test images, annotated with 269 different
labels. An advantage of this set is that it is a result of an
agreement between multiple annotators, so annotations
are not biased by individual preference.

Table 10| contains results using a limited set of features
and their combination. Five sample annotations are pro-
vided in Table In this case WLD texture descriptor
and color descriptors collaborate well. This may be so
because in this set texture can discriminate instances
better than in previous datasets. To enable comparison
with the existing methods we summarize other results
in Table [11]

6.9 Evaluation on NUS-WIDE

NUS-WIDE[40] is a large image dataset consisting of
269,648 images and associated tags from Flickr. This was
created by a research team from the National University
of Singapore, who also provide tags for 81 concepts. It is
suitable for testing label transfer annotation algorithms.
We have obtained this dataset by downloading the im-
ages using the provided URLs, however 36515 images
are either missing or are blank, which can be detrimental
for annotation precision.

We have carried out experiments using the proposed
color descriptor and we have compared the obtained
results with the NUS-wide Lab histogram based k-NN
annotation baseline [40]. The only difference between the
two methods is the distance calculation. In the first case
we have used compactness and in the second case the L1
distance between global Lab histograms as in [40]. We
could not directly use the feature vectors provided with
the dataset because they are global feature vectors and
compactness operates on local features, but the under-
lying feature type is the same. For every test image we
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TABLE 9: Sample annotations using color+DCT63+SIFT from IAPR-TC12

| =
- ? i : : =
£ 1 & ¢
Prediction view river jungle | pool people woman | building front orna- | bike country helmet | sky mountain cloud
middle cloud tree man ment trouser jacket | side short desert bush
Ground- cloud hill jungle | chair man people | building column | bike cap country | cloud desert moun-
truth middle palm range | pool woman front jacket | cycling cyclist hand | tain shrub sky
river view ornament person | helmetjersey racing
trouser road short side
TABLE 12: Sample annotations using SIFT from ESP-game
Prediction people sky crowd | man black dog | coin gold round cir- | sky blue people | old man  shirt
tree blue grass tree cle money tower building glasses book
Ground- crowd man people | black dog grass | circle coin gold old | blue building peo- | book glasses green
truth pole sky tree green guy man run | round square ple sky tower hand man old shirt
shoes white

generate 5 labels. If the ground truth information speci-
fies n labels we evaluate the performance on the first m
labels, where m = min(5; n). We present the annotation
performance in FigureB] It is given in terms of precision
for each concept and in terms of mean average precision
(MAP). Concepts with more training examples - such as
clouds, person, sky - have a significantly higher precision
value for both methods. The k-NN based method has
more concepts with non-zero precision and performs
better for some concepts with more training examples.
However, for most concepts compactness provides a
higher precision. The MAP obtained with compactness
is of 6.21 in comparison with 4.8 corresponding to the
k-NN based classification algorithm.

7 CONCLUSIONS

In this paper we have presented a new technique for
matching images. This can be employed in a nearest
neighbour image annotation method. Several transfer
techniques have been proposed and analysed.

In the experimental section we have provided metric
values on four benchmarks to validate the presented
method. This demonstrates that compactness outper-
forms the histogram distance. Furthermore the proposed
transfer technique improves score values. The annotation
method using multiple features does better than most the
state-of-the-art algorithms. We stress that our goal was
to show that compactness can be considered a useful
alternative to image matching and not to provide a
complete algorithm. This would entail careful feature se-

lection, balancing the weights of each feature, changing
the distance functions.

We enumerate the advantages of the presented ap-
proach:

 conceptually simple;

 simple and fast training process;

o flexible - can easily work with different underlying
low level image descriptors;

o can efficiently combine different feature types (e.g.
color and texture);

 does not need segmented images;

« does not need negative examples for training;

o robust - even with untuned parameters provides
good results;

o competes with and outperforms complex learning
algorithms.

As a drawback, we mention that the matching phase is
more time consuming than some currently used methods
(such as distance between global histograms from the
bag-of-words approach) and is linearly dependent on
the database size, like any k-NN matching annotation
algorithm. However, we have shown by indicating exe-
cution times that even so, annotation time is well within
acceptable ranges. This is why this approach can be
utilized to provide good quality annotations in 5-10
seconds on the machine described in Section 7.1.

Contributions that result from the presented research:

o original idea to use compactness as a “distance”
measure between images, that enables us to effec-
tively compare local descriptors;

o providing a formalism for defining label transfer
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techniques; [7]1 ].Liand].Z. Wang, “Automatic linguistic indexing of pictures by

o devising and testing of elementary transfer types;
« validation and result analysis on 4 different datasets
that proves the efficiency of the method.

Future work will involve experimenting with different
feature types and their various combinations in order to
obtain optimal results. Different implementation ideas
for matching execution time reduction are under con-
sideration. New weight function types for transfer are
also under research. Another variant of the algorithm
would be to use GMMs to represent images instead of k-
means centers. It would also be desirable to find distance
functions that weigh important features more.
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